List of publication for Cellartis® DEF-CS™ Culture System

Boreström, Cecilia, et al. "Footprint-free human	Material & Methods: Establishment and
induced pluripotent stem cells from articular	maintenance of of hiPSC in DEF-CS™ to keep iPSC
cartilage with redifferentiation capacity: A first step	pluripotent with regard to expression of
toward a clinical-grade cell source." Stem Cells	pluripotency markers. Further differentiation into
Trans. Med. (2014) 3, 433-447.	cartilage matrix-producing cells.
Kia, Richard, et al. "MicroRNA-122: a novel	Material & Methods: ChiPSC18 cultured in DEF-CS™
hepatocyte-enriched in vitro marker of drug-	for differentiation to Cellartis® Enhanced hiPS-HEP
induced cellular toxicity." Toxicological Sciences	
(2014): kfu269.	
Hanson, Charles, et al. "Transplantation of human	Material & Methods: Culture of hESC (SA121 EF1 α -
embryonic stem cells onto a partially wounded	GFP) in DEF-CS™ before pre culture step and
human cornea in vitro." Acta ophthalmologica 91.2	subsequent transplantation to human Bowman's
(2013): 127-130.	membrane (corneal tissue)
Norrman, Karin, et al. "Distinct gene expression	Material & Methods: SA121 maintained in DEF-CS™
signatures in human embryonic stem cells	before differentiation into definitive endoderm.
differentiated towards definitive endoderm at	
single-cell level." Methods 59.1 (2013): 59-70.	
Ulvestad, Maria, et al. "Drug metabolizing enzyme	Material & Methods: Expansion of hiPSC colonies in
and transporter protein profiles of hepatocytes	DEF-CS during establishment of ChiPSC4. Culture of
derived from human embryonic and induced	SA181 and ChiPSC4 before production of hES-HEP
pluripotent stem cells." Biochemical pharmacology	and hiPS-HEP, respectively.
86.5 (2013): 691-702.	
Sivertsson, Louise, et al. "Hepatic differentiation and	Material & Methods: SA121 maintained in DEF-CS
maturation of human embryonic stem cells cultured	before further differentiation into DE cells
in a perfused three-dimensional bioreactor." Stem	(subsequently transferred to bioreactor).
cells and development 22.4 (2012): 581-594.	
Valton, Julien, et al. "Efficient strategies for TALEN-	Material & Methods: Transfection of hiPSC by DNA
mediated genome editing in mammalian cell lines."	electroporation, hiPSC cultured in DEF-CS before
Methods 69.2 (2014): 151-170.	and after transfection.
Zandén, Carl, et al. "Stem cell responses to plasma	Material & Methods: Culture of SA121 in DEF-CS.
surface modified electrospun polyurethane	Expansion capacity on different surfaces in DEF-CS
scaffolds." Nanomedicine: Nanotechnology, Biology	medium (?).
and Medicine 10.5 (2014): 949-958.	
Asplund, Annika, et al. "One Standardized	Culture of several hPS cell lines in DEF-CS. Results
Differentiation Procedure Robustly Generates	showing morphology, expression of stem cell
Homogenous Hepatocyte Cultures Displaying	markers, generation time and karyotypes.
Metabolic Diversity from a Large Panel of Human	
Pluripotent Stem Cells" Stem Cell Rev and Rep	
(2015)	

Cellartis iPS Cell to Hepatocyte Differentiation System

Asplund, Annika, et al. "One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells" *Stem Cell Rev and Rep* (2015)

Hepatocytes Derived from Human Induced Pluripotent Stem Cells

All of these publications refer to old version of the hepatocyte product (both hESC and hiPSC derived).

Ulvestad M <i>et al.</i>
Drug metabolizing enzyme and transporter protein profi les of hepatocytes derived from
human embryonic and induced pluripotent stem cells.
Biochem Pharmacol. 2013 Sep 1; 86(5):691-702.
Yildirimman R <i>et al.</i>
Human embryonic stem cell derived hepatocyte-like cells as a tool for in vitro hazard
assessment of chemical carcinogenicity.
<i>Toxicol. Sci.</i> 2011 Dec; 124 (2): 278-90.
Mantel N <i>et al.</i>
Potential markers of attenuation of YF virus after infection of stem cell-derived human
hepatocytes with wild-type Asibi or live-attenuated YF17D virus.
Supplement to The American Journal of tropical Medicine and Hygiene, Volume 83, November
2010, Number 5, abstract 12.
Heins <i>et al. Stem Cells</i> 2004; 22 : 367-376.

United States National Stem Cell Bank; http://www.nationalstemcellbank.org

Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells

All of these publications refer to an old product based on a hESC line consisting of fresh cardiomyocyte clusters.

Yamazaki *et al.*

Beat-to-Beat Variability in Field Potential Duration in Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters for Assessment of Arrhythmogenic Risk, and a Case Study of Its Application.

Pharmacol. & Pharm, 2014, 5, 117-128.

hnke <i>et al.</i>
A novel 3D label-free monitoring system of hES-derived cardiomyocyte clusters: a step forward
to in vitro cardiotoxicity testing.
<i>PLoS One</i> 2013 Jul ; 8 (7).
Jonsson MK <i>et al.</i>
Application of human stem cell-derived cardiomyocytes in safety pharmacology requires
caution beyond hERG.
<i>J. Mol. Cell Cardiol.</i> 2012 May; 52 (5): 998-1008.
Yamazaki K <i>et al.</i>
A novel method of selecting human embryonic stem cell-derived cardiomyocyte clusters for
assessment of potential to infl uence QT interval.
<i>Toxicol. In Vitro</i> . 2012 Mar; 26 (2): 335-342.
Synnergren J <i>et al.</i>
Global transcriptional profi ling reveals similarities and differences between human stem cell-
derived cardiomyocyte clusters and heart tissue.
<i>Physiol. Genomics</i> 2012 Feb 27; 44 (4): 245-258.
Nalos L <i>et al.</i>
Comparison of the IKr blockers moxifl oxacin, dofetilide and E-4031 in five screening models
of pro-arrhythmia reveals lack of specifi city of isolated cardiomyocytes.
<i>Br. J. Pharmacol.</i> 2012 Jan; 165 (2): 467-478.
Synnergren J <i>et al.</i>
Expression of microRNAs and their target mRNAs in human stem cell derived cardiomyocyte
clusters and in heart tissue.
<i>Physiol. Genomics</i> 2011 May 1; 43 (10): 581-594.
Jonsson MK <i>et al.</i>
Quantifi ed Proarrhythmic Potential of Selected Human Embryonic Stem Cell-derived
Cardiomyocytes.
<i>Stem Cell Res.</i> 2010 May; 4 (3): 189-200.
Synnergren J <i>et al.</i>
Molecular signature of cardiomyocyte clusters derived from human embryonic stem cells.
<i>Stem Cells</i> 2008 Jul; 26 (7): 1831-1840.

