Genetically modified human pluripotent stem cell derived hepatocytes display adult characteristics and functionality and are suitable as toxicity reporter

Sara Johansson^{1,2}, Gustav Holmgren^{1,3}, Barbara Küppers Munther^{1,3}, Tina Nilsson¹, Sebastien Paris⁴, Jean-Pierre Cabaniols⁴, Catharina Ellerström¹, Anders Aspegren¹, Josefina Edsbagge¹

¹Takara Bio Europe AB/Cellartis, Arvid Wallgrens backe 20, SE-413 46 Göteborg, Sweden. ²Chalmers, Göteborg, Sweden, ³Skövde Högskola, Skövde, Sweden, ⁴Cellectis SA, Paris, France

ABSTRACT

Hepatocytes derived from human pluripotent stem cells have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery. Introduction of a GFP reporter fused to proteins sensitive for different mode of toxicity to human pluripotent stem cells will allow the generation of a toolbox for studying mechanistic toxicity in specialized cell types derived from human pluripotent stem cells.

In the present study, we differentiated genetically modified human embryonic stem cells exhibiting a GFP reporter fused to the actin filament, to hepatocytes (GFP-actin hES-HEP). The GFP-actin hES-HEP display several adult hepatic features e.g functional activity of drug metabolizing enzymes relevant for toxicity testing (e.g., CYP1A, 2C9, 2C19, 2D6, 2E1, and 3A4). The GFP-actin hES-HEP were exposed to troglitazone to induce toxicity and metformin a non-toxic drug for 48h. The GFP-actin filament rearrangement was assessed as toxic read-out by high content analysis, HCA.

Toxicity Assay

GFP-actin hES-HEP were exposed to 8 doses (quater log) of the hepatotoxic drug troglitzone (top conc. 250µM) and the non-toxic drug metformin (1/2 log, top conc. 1000µM) for 48h prior to fixation and acquisition of images in a Scan R Olympus high content imaging microscope. GFP-actin rearrangement was used as toxicity read out measured by high content analysis.

GFP-actin rearrangement measurement:

• I_{nuc}, Intensity of green fluorescens in the

GFP-actin hES-HEP can function as a toxicity reporter

GFP-actin hES-HEP responded to the drug troglitazone in a dosedependant manner by GFP-actin rearrangement, while there was no response to the non-toxic drug metformin. The sensitivity of GFPactin hES-HEP to troglitazone was in a similar range as for the golden standard, freshly isolated human primary hepatocytes, 72h in culture (Ainscow E. et al 2008, AstraZeneca).

> Troglitazone (top conc. 250µM) dose response curve

100 μM) 100 μM) lose respone curve

The study proves that GFP-actin hESC-line can be differentiated to functional hepatocytes and used as a toxicity reporter. Importantly, using actin filament rearrangment as a toxic read-out showed that the GFP-actin hES-HEP sensitivity to trogliatzone was in the same range as primary human hepatocytes (Ainscow E. et al 2008, AstraZeneca).

Due to the functional cytochrome P450 enzymes and the GFP-actin reporter, GFP-actin hES-HEP are highly suitable for toxicity testing as well as other applications relying on an unlimited source of functional human hepatocytes.

METHOD

GFP-actin hES-reporter line

GFP-actin hES-reporter line was generated by mono allelic introduction of GFP under the actin promoter.

inner mask (area between the inner circle and the nucleus)

• I_{cvto}, Intensity of green fluorescens in the outer mask (area between the outer and inner circle)

Ratio Read-out: Inuc lcyto

Figure 2. *Quantification of GFP-actin rearrangement in a cell by HCA*

RESULTS

Robust differentiation protocol generates CYP P450 competent hepatocytes

Figure 2. *GFP-actin hES-HEP express typical hepatic markers such as alpha-1-antitrypsin* and the actin filaments are GFP-green.

Figure 5. Dose respons curves based on high conent analysis. GFP-actin hES-HEP day 30 of differentiation (n=4).

GFP-actin hES-HEP

Troglitazone increased the ratio (Inuc/Icyto) at 40µM in GFP-actin hES-HEP and at 63µM in human primary hepatocytes (Ainscow E. et al 2008, AstraZeneca).

Data show that the sensitivity of GFP-actin hES-HEP to Troglitazone is in the same range as the golden standard, freshly isolated human

Figure 1. Fusion of GFP to endogenous actin

GFP-actin hES-derived Hepatocytes

GFP-actin hES-line was differentiated to hepatocytes (GFP-actin hES-HEP) for 30 days using Cellartis by Takara Bio Europe propriatory protocol. The protocol is robust and universal allowing differentiation of any hESC- or hiPSC-line to highly pure hepatocyte cultures (80-90% cells with hepatic morphology). The GFP-actin hES-HEP were characterised for functional hepatic phenotype by basal cytochrome P450 (CYP P450) activity by exposing cells for a substrate cocktail for 2h prior to metabolite formation measurement by LC/MS. Immunocytochemisty was performed to visualise expression and location of hepatic markers in the GFP-actin hES-HEP.

Figure 4. CYP P450 activity of GFP-actin hES-HEP compared to cryopreserved human primary hepatocytes cultures 20h after plating. Data are presented as mean±SEM. Mean of 4 donors of human primary hepatocytes are presented, n=4.

GFP-actin hESC line could be efficiently differentiated to hepatocyte cultures of which about 90% express hepatic markers such as HNF4alpha and alpha-1-antitrypsin and display CYP P450 activity in the same range as cryo human primary hepatocytes. Importantly, the variation is lower in GFP-actin hES-HEP compared to human primary hepatocytes.

primary hepatocytes, 72h in culture.

Figure 6. High content images of GFP-actin hES-HEP at non-toxic and toxic doses.

CONCLUSIONS

- Robust protocol allow efficient differentiation of GFP-actin hESC to hepatocyte cultures of high purity.
- GFP-actin hES-HEP display CYP P450 activity in the same range as cryo human primary hepatocytes.
- GFP-actin hES-HEP can function as a toxicity reporter, revealing GFP-actin rearrangement upon troglitazone induced toxicity.
- GFP-actin hES-HEP show sensitivity to troglitazone in the same range as human primary hepatocytes.

Contact:

Josefina Edsbagge, Cellartis/Takara Bio Europe, Arvid Wallgrensbacke 20, 41346 Göteborg, Sweden

Acknowledgement:

The Centre for Cellular Imaging at Göteborg University is acknowledge for support

