Rat Heme Oxygenase-1 EIA Kit Manual

An enzyme immunoassay kit for the quantitative determination of Rat Heme Oxygenase-1
For research use only. Not for use in diagnostic or therapeutic procedures.

Code No. MK124
For 96 assays

Table of contents
Introduction ... 1
Intended use ... 2
Principle .. 2
Reagents and materials 3
Precautions .. 4
Specimen collection and handling 4
Preparation of solutions 4
Stability of solutions 5
Procedure ... 5
Result ... 5
Performance characteristics 6
Basal data ... 7
Reference data about measurement 8
Storage and stability 14
Reference ... 14
Protocol summary 14

Introduction:
When living organisms receive stress from the environment, their organs quickly show various responses as means of maintaining homeostasis. For example, when an organism is invaded by heavy metals such as cadmium, lead, and mercury or endotoxins or when it is exposed to heat shock, ultraviolet light, oxygen radicals, or hypoxic conditions, various proteins and enzymes are induced within its organs as response to stress and the defense mechanism is driven. One example of the response is heme oxygenase, an enzyme that acts on heme, which is a prosthetic group of heme proteins such as hemoglobin. Heme is degraded into bile pigments (biliverdin and bilirubin), carbon monoxide, and reduced iron (Fe^{2+}) by heme oxygenase (Fig.1). The bilirubin produced in this reaction exerts antiinflammatory effects through its strong radical scavenging activity, whereas carbon monoxide is known to exert effects on preservation of organ blood flow through its vasodilative effect, and on regulation of the spermatogenic functions of the testes when exposed to stress.

Heme oxygenase is known to exist as at least two isozymes (heme oxygenase-1 and heme oxygenase-2). While heme oxygenase-2 is a constitutive enzyme, heme oxygenase-1 (HO-1) is an enzyme whose expression is increased intracellularly in response to various type of stress as abovementioned. Thus, monitoring of heme oxygenase-1 is expected to be effective to detect stress. The Rat Heme Oxygenase-1 EIA Kit is a sandwich ELISA kit that uses 2 types of antibodies that recognize rat heme oxygenase-1 and provides a convenient and highly sensitive method for detecting heme oxygenase-1 expressed in response to stress induction.

URL: http://www.takara-bio.com
Principle:

The Rat Heme Oxygenase-1 EIA Kit is an in vitro enzyme immunoassay (EIA) kit for quantitative determination of rat heme oxygenase-1 expressed in rat cell culture supernatant, rat blood, and various rat organs. Due to the nature of the antibodies, the kit cannot be used to quantitate human heme oxygenase-1.

This kit is for research use only. It is not for used in diagnostic or therapeutic procedures.

Intended use:

The Rat Heme Oxygenase-1 EIA Kit is a solid phase EIA Kit based on a sandwich method that utilizes two rat monoclonal anti-heme oxygenase-1 (HO-1) antibodies to detect rat heme oxygenase-1 by two-step procedure. One of the rat monoclonal anti-heme oxygenase 1 is immobilized onto the microtiter plate and blocked against non-specific binding. Samples and standards are incubated in the microtiter plate. The second step is to wash the plate and add the second anti-heme oxygenase-1 labelled with peroxidase (POD). During this incubation, rat heme oxygenase-1 is bound to anti-heme oxygenase-1 (solid phase) on one side and tagged on the other by POD-anti-HO-1. The reaction between POD and substrate (H_2O_2 and tetramethylbenzidine) results in color development with intensities proportional to the amount of rat heme oxygenase-1 present in samples and standards. The amount of rat heme oxygenase-1 can be quantitated by measuring the absorbance using an EIA plate reader. Accurate sample concentration of rat heme oxygenase-1 can be determined by comparing their specific absorbance with those obtained for the standards plotted on a standard curve.
Rat Heme Oxygenase-1 EIA Kit (Precoated)

Each Rat Heme Oxygenase-1 EIA Kit includes reagents sufficient for 96 wells. The expiration date for the complete kit is stated on the outer box label and the recommended storage temperature is 2 - 8°C.

A. Materials provided

Vial 1. Antibody Coated Microtiterplate - 1 plate (8 well x 12 strips)
 The plate coated with murine monoclonal antibody to rat heme oxygenase-1.

Vial 2. Antibody-POD Conjugate - 1 vial (for 11 ml x 1)
 The vial contains lyophilized horseradish peroxidase (POD) conjugated murine monoclonal antibody to rat heme oxygenase-1. Avoid prolonged exposure to light.

Vial 3. Standard - 1 vial (8 ng; for 1 ml x 1)
 The vial contains lyophilized rat heme oxygenase-1.

Vial 4. Sample Diluent - 2 vials (11 ml x 2)
 Each vial contains protein in a buffered solution. Use for Zero standard, and for dilution of the Standard (vial 3) and samples which are above the calibration curve.

Vial 5. Substrate Solution - 1 vial (12 ml x 1)
 Each vial contains hydrogen peroxide and tetramethylbenzidine in a buffered solution.

Vial 7. Extraction Buffer - 1 vial (11 ml x 1)
 Each vial contains 1% NP40 in PBS. Use for cell extraction.

B. Materials required but not provided

1. Reagents
 - Washing Buffer: Phosphate-buffered Saline (PBS) containing 0.1% Tween 20
 (Dissolve 8.0 grams of NaCl, 0.2 grams of KCl, 2.9 grams of Na₂HPO₄ 12H₂O and 0.2 grams of KH₂PO₄ and 1 ml NP40 in 1000 ml of distilled water.)
 - Stop Solution: 1 N H₂SO₄

2. Materials
 - Precision pipettes with disposable tips: 20 and 100 μl micropipettes, 10 - 200 μl adjustable multiwell pipetter or 100 μl multiwell pipetter
 - Beakers, flasks, cylinders necessary for preparation of reagents
 - Disposable pipettes and test tubes
 - Microtiter plate reader for measurement of absorbance at 450 nm
 - Graph paper
Precautions:
- Do not mix reagents from different kit lots.
- Do not use reagents beyond expiration date on label.
- In order to avoid reagent contamination, use disposable pipette tips and/or pipettes.
- Sodium azide inactivates POD. Solutions containing sodium azide should not be used in this assay.
- Do not expose Substrate Solution to strong light during storage or incubation.
- Avoid contact of Substrate Solution and Stop Solution with skin or mucous membranes. If these reagents come into contact with skin, wash thoroughly with water. Do not pipette by mouth. Do not smoke, eat, or drink in area where specimens or kit reagents are handled. All blood fluids should be considered as potentially infectious.
- Avoid contact of Substrate Solution and Stop Solution with any metal surfaces. Disposable glassware or test tubes are recommended for handling the Substrate Solution. If non-disposable is used, it must be acid washed and thoroughly rinsed with distilled, deionized water.
- Do not use the Substrate Solution if its colour is changed to thick blue.

Specimen collection and handling:
Samples collection should be done just before the assay is performed. If sample needs to be stored before the assay, it should be stored frozen at -80°C for optimal results.
Rat cell culture supernatant, blood, and various organs are suitable for this assay. In case of blood sample, serum should be used.
All samples to be used in this assay should be treated by the same handling. Collection site is important for optimal result.
Dilution rate should be determined by the preliminary investigation. When rat serum or organ extracts are used as sample, dilute the sample with Sample Diluent by 2-8 times. The dilution rate can vary depending on the stress level.
When organs are used as sample, specimen should be homogenized Extraction Buffer after weighing. Centrifuge the homogenized solution, and the supernatant is used for the assay.

Preparation of solutions:
Note: The following solutions should be prepared directly before use.

Solution 1. Antibody-POD Conjugate Solution
Dissolve the contents of Vial 2 in 11 ml distilled water and mix gently followed by 10 minutes slowly rolling or occasional mixing, avoiding foam formation.

Solution 2. Standard Solution
Rehydrate Standard (Vial 3) with 1 ml distilled water. Slowly roll for approximately 10 minutes or let vials to stand and sporadically mix gently.

The Standard Solution contains 8 ng rat HO-1/ml. Prepare a dilution series of 4, 2, 1, 0.5, 0.25 ng/ml by diluting the Standard Solution with Sample Diluent. Sample Diluent is directly used as 0 ng/ml.

Substrate Solution (vial 5) should be brought to room temperature before assay. Confirm that the color of the solution has not changed into dark blue. When it reacts with metal ion, the color development can occur. Therefore caution should be paid not to contaminate with tapped water. When Substrate Solution is not all used up in one assay, dispensed in aliquots of required volume.
Stability of solutions:
- Solution 1. The reconstituted lyophilisate is stable for 1 week at 4°C and for 1 month when stored at -30°C. Do not repeat freeze-thaw cycles.
- Solution 2. The reconstituted lyophilisate must be used on the same day when prepared. Standard before dilution (8 ng/ml) is stable for 1 month at -80°C. Freeze-thaw cycles should be minimized less than 3 cycles. Refer to the later information.

Procedure:
Double determinations of all samples and standards should be performed.
All of the Kit’s content should be brought to room temperature before use!
For thorough mixing, the microtiter plate can be gently agitated on a plate mixer or by mixing the plate sporadically by hand.

[Enzyme immunoassay]
- Sample incubation: Pipette 100 μl sample and the dilution series of the Standard (Solution 2) into one well within 5 minutes. In this case, it is recommended to prepare sample on a different 96-well plate, and then quickly transfer onto the plate containing the Standard, using a 8-lane pipette. Mix, seal the microtiter plate (e.g. with a foil) and incubate 1 hour at room temperature (20-30°C). To obtain reliable assay result, it is recommended to prepare the dilution series of the Standard in both 1st and 12th rows in the plate.
- Remove sample solution and wash the wells 3 times with ca. 400 μl of PBS containing 0.1% Tween 20; between the separate washing steps empty out the microtiter plate and vigorously tap onto paper towel, especially after the last washing.
- Antibody-POD conjugate incubation: Pipette 100 μl of Antibody-POD Conjugate Solution (Solution 1) into one well, mix, seal the microtiter plate (e.g. with a foil) and incubate 1 hour at room temperature (20 - 25°C).
- Remove sample solution and wash the wells 4 times as described above (It is especially important after this step to thoroughly empty out the remaining fluid before adding the substrate).
- Substrate incubation: Add 100 μl Substrate Solution(vial 5) into each well and incubate at room temperature (20 - 25°C) for 15 minutes.
- Add 100 μl Stop Solution(1N H₂SO₄) into each well in same order as for substrate. Tap plate gently to mix.
- Measure the absorbance at 450 nm with a plate reader. The absorbance should be read as soon as possible after the completion of the assay. It may be read up to 1 hour after addition of Stop Solution if wells are protected from light at room temperature.

Note: It is important that Stop Solution is added to wells prior to reading at 450 nm. Addition of Stop Solution causes an increase in absorbance of the Substrate Solution and shift in absorbance spectrum.

Results:
1. Standard curve
Record and average the absorbance at 450 nm for the duplicate standard wells. Plot the absorbance (vertical) versus the concentration of each rat HO-2 standard in ng/ml (horizontal) for the standards using optimal fitting curve.
2. Samples
Record and average the absorbance at 450 nm for the duplicate sample wells. Locate the average absorbance value on the vertical axis and follow a horizontal line intersecting the standard curve. At the point intersection, read the rat HO-1 concentration (ng/ml) from the horizontal axis.

URL: http://www.takara-bio.com
Performance characteristics:

1. Range of standard curve
 Range: 0.125 - 8.000 ng/ml Detection limit: 0.125 ng/ml

2. Specificity
 This kit specifically measures rat HO-1 with no detectable cross reaction with rat HO-2.
 It cannot be used for human, rabbit, quinea pig, or mouse sample.

3. Assay duration
 Two and half hours after sample incubation.

4. Total assay capacity
 96 assays

5. Assay capacity for test samples
 If all assay wells (including standards and test samples) are run in duplicate, 40 samples
 can be run in duplicate per kit.

6. Test specimen type
 Rat serum, organ extracts, cell culture supernatant.

7. Specimen volume required
 If each test sample is run in duplicate, approximately 220 μl is required. It is necessary
 to dilute blood sample of rat about 2 or 3 times.

8. Limitation
 Since conditions may vary from assay to assay, a standard curve must be established
 for every run. Since cross contamination between reagents will invalidate the test,
 disposable pipette tips should be used.

Thorough washing of the wells between incubations is required:
1) Completely empty out the remaining fluid from the well before dispensing fresh wash
 solution.
2) Use sufficient wash solution for each wash cycle (approximately 400 μl).
3) Do not allow wells to sit uncovered for extended periods between incubation steps.

Only samples with absorbance values falling within the range of the standard curve
should be assigned a rat HO-1 concentration from the curve.

Note:
1) When rat tissue extract or rat serum is used as assay sample, the expression of rat HO-1
 largely varies depending on the degree of stress exposed to rat. Therefore, it is
 recommended to perform the assay using the double dilution, for example, so that the
 concentration can be obtained from the absorbance values falling within the range of the
 standard curve.
2) It is recommended that a constant dilution rate be used for the continuous assay series.
 The values obtained with undiluted samples tend to be lower than those obtained with
 double dilution. This is due to the effects of the high concentrations of proteins present in
 serum and tissues.
1. Typical standard curve
(Do Not Use To Calculate Unknowns)

\[y = A + B \times x + C \times x^2 \]
\[A = -0.00649 \quad B = 0.283 \quad C = 0.00412 \]

![Standard curve graph]

<table>
<thead>
<tr>
<th>HO-1 (ng/ml)</th>
<th>8.000</th>
<th>4.000</th>
<th>2.000</th>
<th>1.000</th>
<th>0.500</th>
<th>0.250</th>
<th>0.125</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{405})</td>
<td>2.512</td>
<td>1.263</td>
<td>0.522</td>
<td>0.222</td>
<td>0.114</td>
<td>0.071</td>
<td>0.057</td>
<td>0.039</td>
</tr>
</tbody>
</table>

2. Intra-assay precision (n=16)
Assay was carried out with 16 replicates of 3 samples containing different concentration of rat HO-1 positive samples derived from kidney and brain.

<table>
<thead>
<tr>
<th></th>
<th>Average concentration (ng/ml)</th>
<th>Standard deviation (ng/ml)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>5.646</td>
<td>0.117</td>
<td>2.07</td>
</tr>
<tr>
<td>Sample B</td>
<td>3.600</td>
<td>0.079</td>
<td>2.18</td>
</tr>
<tr>
<td>Sample C</td>
<td>0.726</td>
<td>0.018</td>
<td>2.52</td>
</tr>
</tbody>
</table>

3. Inter-assay precision (performance 3 times)
Assay to assay precision with one laboratory was evaluated in three independent experiment over three days using 4 different rat HO-1 positive samples derived from kidney and brain.

<table>
<thead>
<tr>
<th></th>
<th>Average concentration (ng/ml)</th>
<th>Standard deviation (ng/ml)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>11.901</td>
<td>0.280</td>
<td>2.35</td>
</tr>
<tr>
<td>Sample B</td>
<td>4.441</td>
<td>0.210</td>
<td>4.73</td>
</tr>
<tr>
<td>Sample C</td>
<td>2.907</td>
<td>0.016</td>
<td>3.65</td>
</tr>
<tr>
<td>Sample D</td>
<td>0.673</td>
<td>0.033</td>
<td>4.87</td>
</tr>
</tbody>
</table>
4. Recovery test
Two samples containing various concentration of rat HO-1 were mixed at the same ratio, and the measurement values and the calculation values were compared.

<table>
<thead>
<tr>
<th>Sample Conc.</th>
<th>A</th>
<th>B</th>
<th>A+B/2 Actual measurement</th>
<th>A+B/2 Theoretical value</th>
<th>Recovery rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.97</td>
<td>8.97</td>
<td>8.97</td>
<td>8.97</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>8.97</td>
<td>4.96</td>
<td>7.26</td>
<td>6.97</td>
<td>104</td>
</tr>
<tr>
<td>A</td>
<td>8.97</td>
<td>3.60</td>
<td>6.41</td>
<td>6.29</td>
<td>102</td>
</tr>
<tr>
<td>B</td>
<td>8.97</td>
<td>1.73</td>
<td>5.45</td>
<td>5.35</td>
<td>102</td>
</tr>
<tr>
<td>A</td>
<td>4.96</td>
<td>4.96</td>
<td>4.96</td>
<td>4.96</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>4.96</td>
<td>3.60</td>
<td>4.55</td>
<td>4.28</td>
<td>106</td>
</tr>
<tr>
<td>A</td>
<td>4.96</td>
<td>1.73</td>
<td>3.28</td>
<td>3.35</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>3.60</td>
<td>3.60</td>
<td>3.60</td>
<td>3.60</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>3.60</td>
<td>1.73</td>
<td>2.62</td>
<td>2.67</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>3.60</td>
<td>0.66</td>
<td>2.36</td>
<td>2.13</td>
<td>111</td>
</tr>
<tr>
<td>A</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>1.73</td>
<td>0.66</td>
<td>1.23</td>
<td>1.20</td>
<td>103</td>
</tr>
<tr>
<td>A</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>0.66</td>
<td>0.00</td>
<td>0.37</td>
<td>0.33</td>
<td>112</td>
</tr>
</tbody>
</table>

Unit: ng/ml

Reference data about measurement:

1. Antibody specificity
The two antibodies used in this kit specifically react with rat heme oxygenase-1. They do not cross-react with rat heme oxygenase-2. This kit cannot be used for the assay of heme oxygenase-1 of human, rabbit, guinea pig, or mouse.

Immobilized antibody: GTS-3
Labeled antibody: GTS-1

2. Antigen stability
Assays were performed on 4 different concentrations of rat HO-1-positive samples after they were subjected to 10 cycles of freezing and thawing over the range of -80°C to +20°C. With each freeze-thaw cycle, 0.3 ml was sampled from the certain consistent volume of sample for the purpose of performing duplicate assay; the measurements were performed all at once after the 10th sampling was completed.
<Results>
The coefficient of variation was ≤ 3% for all 4 concentrations, suggesting that the effects of freeze-thaw cycles on assay results are minimal.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>1.361</td>
<td>1.374</td>
<td>1.372</td>
<td>1.345</td>
<td>1.375</td>
</tr>
<tr>
<td>Sample B</td>
<td>2.302</td>
<td>2.306</td>
<td>2.303</td>
<td>2.351</td>
<td>2.289</td>
</tr>
<tr>
<td>Sample C</td>
<td>2.668</td>
<td>2.666</td>
<td>2.627</td>
<td>2.634</td>
<td>2.600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>1.364</td>
<td>1.355</td>
<td>1.400</td>
<td>1.390</td>
<td>1.423</td>
</tr>
<tr>
<td>Sample B</td>
<td>2.346</td>
<td>2.283</td>
<td>2.343</td>
<td>2.339</td>
<td>2.437</td>
</tr>
<tr>
<td>Sample C</td>
<td>2.643</td>
<td>2.621</td>
<td>2.649</td>
<td>2.675</td>
<td>2.706</td>
</tr>
</tbody>
</table>

The numbers at the upper row means the number of repeated freeze-thaw cycle.
The values are measured concentration on each sample.

<table>
<thead>
<tr>
<th></th>
<th>Average concentration (ng/ml)</th>
<th>Standard deviation (ng/ml)</th>
<th>CV(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>1.376</td>
<td>0.024</td>
<td>1.7</td>
</tr>
<tr>
<td>Sample B</td>
<td>2.330</td>
<td>0.055</td>
<td>2.4</td>
</tr>
<tr>
<td>Sample C</td>
<td>2.649</td>
<td>0.037</td>
<td>1.4</td>
</tr>
<tr>
<td>Sample D</td>
<td>6.508</td>
<td>0.090</td>
<td>1.4</td>
</tr>
</tbody>
</table>

3. Effects of hemolysis
The effects of hemolysis on sample assay were evaluated.

<Methods>
Rat spleens and livers were promptly extracted under ether anesthesia, and entire spleens and 1/5 portions of livers were ground separately using a stainless steel mesh in order to disperse the cells. The cells were collected as a pellet by centrifugation at 3000 rpm using a desktop centrifuge, washed once using 10 ml of PBS, and recollected by centrifugation. After this wash was repeated twice, the 10 ml PBS suspension of rat spleen and liver cells was dispensed into two 15 ml centrifuge tubes in 5 ml per tube.
One tube was subjected to centrifugation, and the supernatant was removed. Five ml of a hemolytic agent containing ammonium chloride was added, and the tube was left at room temperature for 5 min in order to allow the erythrocytes present to burst. The cells were collected by spinning, washed with PBS once, and lysed in 1 ml of Extraction Buffer (hemolysis sample). The other tube was subjected to centrifugation and the cells were collected. Then pellet was lysed in 1 ml of Extraction Buffer (untreated sample). Assays were performed on these samples using the kit.
<Results>
Assay results were compared between the hemolysis sample from which the erythrocyte component was removed through hemolysis treatment, and the untreated sample. The results show there was no marked inhibition of the reactions due to hemolysis.

Table A. Cadmium exposure study using cultured cells. (HO-1 yield and cell number.)

<table>
<thead>
<tr>
<th></th>
<th>x 5</th>
<th>x 25</th>
<th>x 125</th>
<th>x 625</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>untreated</td>
<td>4.173</td>
<td>1.298</td>
<td>0.164</td>
<td>0.083</td>
<td>0.043</td>
</tr>
<tr>
<td>Hemolyzed</td>
<td>4.000</td>
<td>1.536</td>
<td>0.220</td>
<td>0.082</td>
<td>0.044</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>untreated</td>
<td>1.782</td>
<td>0.243</td>
<td>0.073</td>
<td>0.053</td>
<td>0.044</td>
</tr>
<tr>
<td>Hemolyzed</td>
<td>1.575</td>
<td>0.189</td>
<td>0.067</td>
<td>0.053</td>
<td>0.046</td>
</tr>
</tbody>
</table>

4. Effect of cadmium as a stressor
Cadmium exposure test was performed using rat cell culture.

Method
1. Cell culture
1) NRK49F (rat normal kidney cell) and 3Y1 (rat fibroblast) were added in each 1 ml into 24-well culture plate at the concentration of 5-10 x 10⁴ cell/ml.
2) On the day after, 1 mM CdCl₂ was added to have the final concentration of 20 μM. As the control, PBS was added instead of CdCl₂.
3) Three hours later, remove the culture supernatant of each one well from the CdCl₂-added group and PBS-added group, and wash with PBS. Then the cells were dispersed in 0.5 ml of 0.25% Trypsin, and the cell number was counted.

2. Method of cell collection and time course experiment
After exposing the cells to cadmium, cell culture supernatant was collected from each one well from the CdCl₂-added group and PBS-added group in the time course of 3 hours later, 8 hours later, 12 hours later, 22 hours later, 52 hours later, and 72 hours later. Then Extraction Buffer was added in 1 ml/well each well to prepare the cell extraction solution.

<table>
<thead>
<tr>
<th></th>
<th>3hr.</th>
<th>8hr.</th>
<th>12hr.</th>
<th>22hr.</th>
<th>52hr.</th>
<th>72hr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRK49F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO-1 in cell extract (ng/ml)</td>
<td>Addition CdCl₂</td>
<td>38.70</td>
<td>123.30</td>
<td>137.37</td>
<td>321.30</td>
<td>76.98</td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>25.07</td>
<td>25.07</td>
<td>27.97</td>
<td>26.06</td>
<td>25.27</td>
</tr>
<tr>
<td>HO-1 in supernatant (ng/ml)</td>
<td>Addition CdCl₂</td>
<td>0.00</td>
<td>2.17</td>
<td>6.57</td>
<td>4.29</td>
<td>15.58</td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>cell number/well</td>
<td>Addition CdCl₂</td>
<td>90000</td>
<td></td>
<td></td>
<td>430000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>90000</td>
<td></td>
<td></td>
<td>440000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3hr.</th>
<th>8hr.</th>
<th>12hr.</th>
<th>22hr.</th>
<th>52hr.</th>
<th>72hr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Y1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO-1 in cell extract (ng/ml)</td>
<td>Addition CdCl₂</td>
<td>22.84</td>
<td>32.94</td>
<td>43.47</td>
<td>48.15</td>
<td>52.59</td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>24.66</td>
<td>24.66</td>
<td>27.16</td>
<td>35.64</td>
<td>43.83</td>
</tr>
<tr>
<td>HO-1 in supernatant (ng/ml)</td>
<td>Addition CdCl₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>cell number/well</td>
<td>Addition CdCl₂</td>
<td>14000</td>
<td></td>
<td></td>
<td>550000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>14000</td>
<td></td>
<td></td>
<td>630000</td>
<td></td>
</tr>
</tbody>
</table>

Table A. Cadmium exposure study using cultured cells. (HO-1 yield and cell number.)
Graph B: Cadmium exposure test on cultured cells

Table A and Graph B show the concentrations of HO-1 found in each sample. Table A shows the numbers of cells present after 3 hrs. and 72 hrs.; there were no significant differences in the numbers of cells between the group to which cadmium was added and the PBS group (control), suggesting that the addition of cadmium (20 μ M) does not inhibit cell proliferation. It was observed, however, that the amount of HO-1 produced increased with the addition of cadmium. In NRK49F cells, HO-1 was detected in the culture supernatant from 52 h onward, and was suspected to have been released into the medium from the cells. The amount of HO-1 produced and the production patterns seen over time following the addition of cadmium were different for the 2 types of cells cultured. This suggests that different types of cells show different stress responses.

5. Amounts of cadmium added and heme oxygenase-1 production
The relationship between the amount of cadmium added and the HO-1 yield was studied using NRK49F cells.

<Methods>
Two-fold serial dilutions of cadmium chloride were prepared, and NRK49F cells (culture volume: 1 ml/well) were cultured in the presence of various concentrations of cadmium chloride (final concentrations of 0-20 μ M). The culture supernatant was collected after 16 hrs. and the cells were collected and extracted by adding the Extraction Buffer provided in the kit at 1 ml/well. The HO-1 concentration in the cell extract solution and the culture supernatant were measured using the kit.
6. Induction of heme oxygenase-1 in various rat organs by addition of cadmium

The changes in the amounts of HO-1 produced in various organs were studied using intraperitoneal administration of cadmium chloride as a stressor.

<Methods>

Cadmium chloride (20 μmol/kg body weight) or PBS (control) was intraperitoneally administered into rats peritoneal, and various organs were collected after 16 h under anesthesia. The Extraction Buffer provided in the kit was added to each organ (0.25 g wet organ weight/ml) and the organs were homogenized. The amounts of HO-1 in these homogenates were measured using the kit.
<Result>
The graph below shows that different organs show different responses.

<table>
<thead>
<tr>
<th></th>
<th>Spleen</th>
<th>Liver</th>
<th>Kidney</th>
<th>Heart</th>
<th>testis</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdCl₂ added</td>
<td>27600.0</td>
<td>256.0</td>
<td>86.0</td>
<td>53.2</td>
<td>300.0</td>
<td>8.9</td>
</tr>
<tr>
<td>Control</td>
<td>5600.0</td>
<td>143.0</td>
<td>94.5</td>
<td>38.8</td>
<td>295.0</td>
<td>9.4</td>
</tr>
</tbody>
</table>

<Precautions in preparation of rat serum samples>
As the assay target (HO-1) is induced and expressed by stress; the ether anesthesia performed before injection can act as an additional stress factor and consequently may affect the data. In order to eliminate of this effect, control animals receiving anesthesia only should always be included in experiments. The blood collection method used should be thoroughly evaluated when performing blood concentration measurements. If heme oxygenase-1 produced from the tissues surrounding the blood collection site may be detected in measurements by mistake as enzymes present in the blood.
Storage and stability:

This kit is shipped at 2 - 8°C and should be stored at 2 - 8°C if not used.
Under this condition, the kit is stable until the expiration date on label.

References:

Protocol summary:

1. Add 100 μ l of Standard or sample to appropriate wells, and incubate 1 hours at room temperature (20 - 25°C).
2. Remove sample solution and wash the wells 3 times with 400 μ l of PBS containing 0.1% Tween 20.
3. Add 100 μ l of Antibody-POD conjugate solution into wells and incubate at room temperature for 1 hour.
4. Remove sample solution and wash 4 times with 400 μ l of PBS per wells, aspirating thoroughly between washes.
5. Add 100 μ l of Substrate Solution to each well. Incubate 15 minutes at room temperature.
6. Add 100 μ l of Stop Solution to all wells. Mix gently.
7. Read at 450 nm as soon as possible.