For Research Use

TaKaRa

LVpro™ Packaging Mix with pLVpro Pur Series

Product Manual

Table of Contents

l.	Description	3
II.	Components	6
III.	Storage	9
IV.	Additional Materials Required, not Provided	9
V.	Construction of pLVpro Lentivirus Vector Plasmid carrying the desired gene	.11
VI.	Production of recombinant lentivirus from pLVpro Lentivirus Vector Plasmid	.11
VII.	Titration of recombinant lentivirus	.14
VIII.	Methods for transduction of target cells with recombinant lentiviruses	.16
IX.	Appendix	.20
X.	References	.21
ΧI	Related Products	21

I. Description

A. Gene transduction and expression using recombinant lentivirus

Recombinant lentiviral vector is a viral vector that can transduce genes into almost all mammalian cells types, including primary culture cells, stem cells, nerve cells, and non-dividing cells. This system is designed to produce safe, high-titer, non-proliferating lentiviral vectors that can transduce a broad range of cell types with high transgene expression.

This product uses an expression system with SIN (Self INactivating)-type pLVpro Vectors (pLVpro-CMV-Pur Vector, pLVpro-EF1 α-Pur Vector, Cat. #6969 - 6972; not sold separately) in combination with LVpro Packaging Mix (Cat. #6195). Simply co-transfect Lenti-X™ 293T cells (Lenti-X 293T Cell Line, Cat. #632180) with pLVpro Lentivirus Vector Plasmid carrying your gene of interest, and LVpro Packaging Mix for easy preparation of a non-replicating recombinant virions (virus particles).

B. LVpro Packaging Mix

LVpro Packaging Mix is designed with an optimal plasmid mixture that expresses the components necessary for lentiviral vector preparation and virus packaging for high-titer recombinant lentivirus production. Co-transfection of Lenti-X 293 cells with pLVpro lentivirus vector and the Packaging Mix induces transient expression of Gag, Pol, Rev, and VSV-G envelope proteins, which facilitates the recombinant viral RNA (transcribed from the pLVpro lentiviral vector) to be incorporated into complete virus particles (Fig. 1). Using this optimized Packaging Mix and Lenti-X 293T cells with highly efficient *Trans* IT-VirusGEN Transfection Reagent (Mirus Bio, No. MIR6700) or *Trans* IT-293 Transfection Reagent (Mirus Bio, No. MIR2700) makes it possible to obtain a lentiviral vector with a high viral titer, which in many cases can be used to infect the target cells directly without concentration.

C. pLVpro Lentivirus Vector Plasmid

pLVpro Lentivirus Vector Plasmid is a SIN-type lentiviral vector plasmid that contains various sequences that, together with the HIV-1 LTR (CMV-5'LTR and 3'LTR/ Δ U3) and the lentivirus packaging signal (Ψ), can improve the expression of the transgene, the virus titer, and the overall vector function. The pLVpro vector is a Tat-independent 3rd-generation lentiviral vector in which the U3 region of 5'LTR is replaced with the CMV promoter, and the HIV-derived sequences near the packaging signal are eliminated without affecting the infectious titer.

- WPRE (woodchuck hepatitis virus post-transcriptional regulatory element):
 WPRE promotes processing and maturation of RNA and increases its transport
 from the nucleus by preventing readthrough at the polyA site (Zufferey, et al.,
 1999; Higashimoto, et al., 2007). It acts upon the viral genome transcript within the
 packaging cell to promote vector packaging and increase viral titer. Since WPRE
 promotes maturation of the mRNA produced by the vector's internal promoter, it
 promotes expression of the desired gene within the target cell. The potentially
 carcinogenic sequences within the WPRE have been modified (WPRE2) in the
 pLVpro Lentivirus Vector Plasmid.
- cPPT/CTS (central polypurine tract-central termination sequence):
 The "DNA flap" formed by cPPT and CTS promotes transport of the viral genome into the nucleus during infection of the target cell. For this reason, the cPPT/CTS element improves recombination of the vector into the genome and the transduction efficiency (Zennou, et al., 2000).
- **RRE** (Rev response element): Improves viral titer by promoting transport of unspliced viral genome from the nucleus (Cochrane, *et al.*, 1990).

This series features two types of promoters - CMV and EF1 α . Moreover, a puromycin resistance gene downstream of a PGK promoter allows for selection of cells expressing the desired transgene.

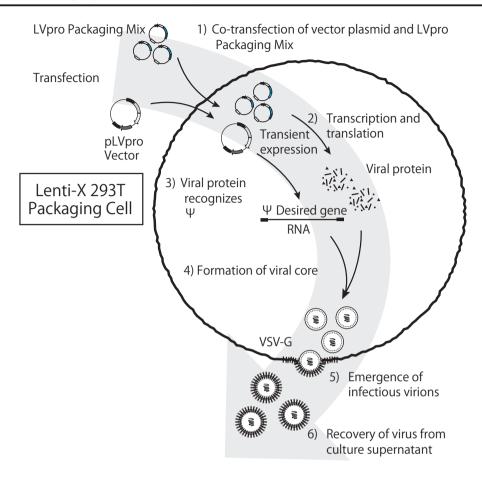


Fig. 1. Production of lentivirus using LVpro Packaging Mix and Lenti-X 293T cells
Co-transfection with the LVpro Packaging Mix and pLVpro Lentivirus Vector
Plasmid carrying the desired gene (Step 1), results in the production of
corresponding recombinant lentivirus genome RNA transcripts and viral
packaging proteins (Step 2). The packaging signal (Ψ) on the recombinant
viral RNA genome is recognized by the packaging protein (Step 3), resulting in
incorporation of the recombinant viral RNA into the packaging protein, and the
formation and transport of the viral core to the cell membrane (Step 4). There,
the core is enveloped by the cell membrane that includes the VSV-G envelope
protein. Mature infectious virions (viral particles) emerge from the cell (Step 5)
and are released into the culture medium. The viral particles are then recovered
from the culture medium (Step 6).

Although viral particles produced with this kit possess infectivity, they lack several genes that are necessary for reproduction and multiplication within the target cell. This kit uses a number of different plasmids for viral protein expression, making it hard to produce virus with replication capacity unless low-frequency recombination occurs many times over, thus making the kit extremely safe.

D. Biosafety

The protocols in this User Manual require the production, handling, and storage of infectious lentivirus. It is imperative to fully understand the potential hazards of, and take necessary precau-tions for the laboratory use of lentiviruses.

Although biosafety regulations and practices vary from country to country, the National Institute of Health and Center for Disease Control have designated recombinant lentiviruses as Biosafety Level II organisms. This requires the maintenance of a Biosafety Level II facility for work involving this virus and others like it.

The pseudotyped lentiviruses packaged from the HIV-1-based vectors described here are capa-ble of infecting human cells. The viral supernatants produced by these lentiviral systems could, depending on your insert, contain potentially hazardous recombinant virus. Similar vectors have been approved for human gene therapy trials, attesting to their potential ability to express genes *in vivo*.

For more information on Biosafety Level II agents and practices, download the following reference: Biosafety in Microbiological and Biomedical Laboratories (BMBL), Fifth Edition (February 2007) HHS Pub. No. (CDC) 93-8395. U.S. Department of Health and Human Services Centers for Disease Control and Prevention and NIH. If possible, observe and learn the practices described below from someone who has experience working with lentiviruses.

Summary of Biosafety Level II practices:

- Use standard microbiological practices
- · Limit access to work area
- Post biohazard warning signs
- Minimize production of aerosols
- Decontaminate potentially infectious wastes before disposal
- Use precautions with sharps (e.g., syringes, blades)
- Maintain a biosafety manual defining any needed waste decontamination or medical surveillance policies

Note: When recombinant lentiviruses obtained by modifying this vector product

are used, the experimental category may be Biosafety level III or higher,

depending on the nature of the modification.

Note: Please be advised that our company cannot be held responsible for any

accidents or damage related to the handling and use of this product.

II. Components

LVpro Packaging Mix (Cat. #6195)

LVpro Packaging Mix 60 doses* (140 μ I x 3)

* When a 100-mm dish is used.

LVpro Packaging Mix (pLVpro-CMV-Pur Vector) (Cat. #6973)

LVpro Packaging Mix (pLVpro-EF1 α -Pur Vector) (Cat. #6974)

LVpro Packaging Mix (pLVpro-CMV-ZsGreen1-Pur Vector) (Cat. #6975)

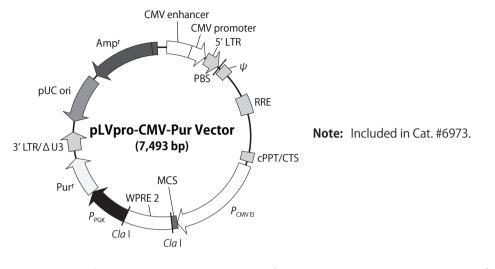
LVpro Packaging Mix (pLVpro-EF1 α -ZsGreen1-Pur Vector) (Cat. #6976)

Cat. #6973 - 6976 are sets of LVpro Packaging Mix (Cat. #6195) and each pLVpro Vector (Cat. #6969 - 6972).

Note: pLVpro Vectors (Cat. #6969 - 6972) are not sold separately.

pLVpro Vector (Cat. #6969 - 6972)

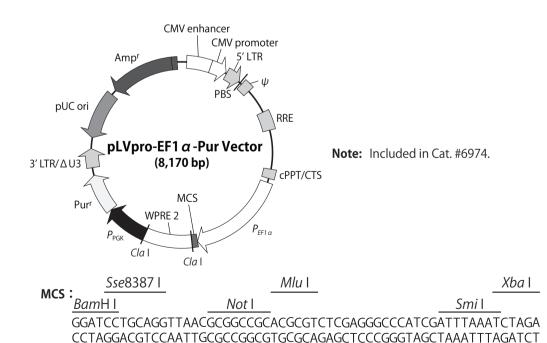
Content: 20 μ g, Concentration: 0.5 μ g/ μ l


Note: An LVpro Packaging Mix with pLVpro Series (Cat. #6962 - 6967) that does not

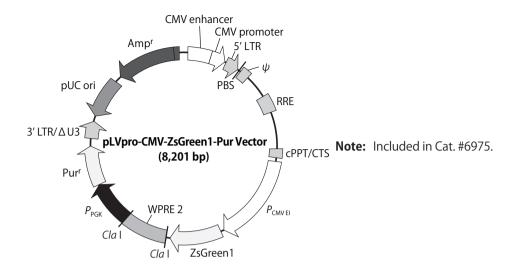
include the puromycin resistance gene is also available.

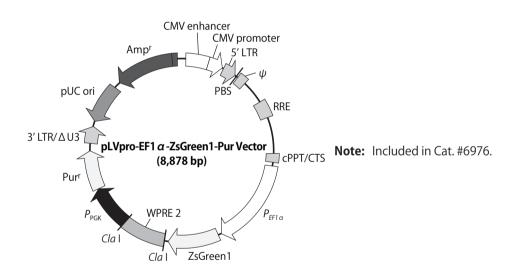
<Vector maps>

Note: Estimating from the genome size of wild-type HIV-1, the size of the desired gene sequence that can be inserted into MCS is approximately 5 kb.



MCS: Sse8387 | Mlu | Apa | Xba |


BamH | Not | Xho | Smi |


GGATCCTGCAGGTTAACGCGGCCGCACGCGTCTCGAGGGCCCATCGATTTAAATCTAGA

CCTAGGACGTCCAATTGCGCCGGCGTGCGCAGAGCTCCCGGGTAGCTAAATTTAGATCT

III. Storage -20°C

IV. Additional Materials Required, not Provided

A. Cell lines for lentivirus packaging and titration

Lenti-X 293T Cell Line (Cat. #632180)

This is a HEK 293T-derived cell line optimized for virus production with a high transfection efficiency. To obtain a high-titer infectious lentivirus, you can use LVpro Packaging Mix and pLVpro Vector Plasmid carrying the desired gene, in combination with *Trans* IT-VirusGEN or *Trans* IT-293 Transfection Reagents, to co-transfect Lenti-X 293T cells. The transfected cells will transiently produce a high-titer recombinant lentivirus. You can also use an HEK 293T cell line, such as HEK 293T/17 (ATCC No. CRL-11268), instead of these cells. A number of lineages of the HEK 293T strain are commercially available, but we recommend using one with a high transfection efficiency.

• HT-1080 cell line

American Type Culture Collection HT-1080 (ATCC No. CCL-121) (recommended). With this cell line, transduction can easily be performed using recombinant lentiviruses, and it is often used in the measurement of lentivirus titer.

B. Reagents

- One of the following transfection reagents*1
 - a. *Trans*IT-VirusGEN Transfection Reagent (Mirus Bio, No. MIR6700)
 - b. TransIT-293 Transfection Reagent (Mirus Bio, No. MIR2700)
 - c. CalPhos™ Mammalian Transfection Kit (Cat. #631312)
- Vector for use as positive control*2
 - d. pLVpro-CMV-ZsGreen1-Pur Vector (Included in Cat. #6975)
 - e. pLVpro-EF1 α-ZsGreen1-Pur Vector (Included in Cat. #6976)
 - *1 To obtain high-titer lentiviruses with this product, we strongly recommend using *Trans* IT-VirusGEN Transfection Reagent (a) or *Trans* IT-293 Transfection Reagent (b).
 - *2 d and e are lentivirus vector plasmids that express fluorescent protein ZsGreen1, and are convenient for use as positive controls to check transfection efficiency and the biological titer of lentivirus. Selection of the CMV versus the EF1 α promoter will depend on the type of cells used for transfection.

C. Media for culturing mammalian cells

- Lenti-X 293T Cell Line and HT-1080 cell line culture medium
 Use Dulbecco's Modified Eagle's Medium (DMEM) containing high-concentration glucose (4.5 q/L) with 10% FBS.
- Culture medium and additives for target cells
- Penicillin/Streptomycin solution (10,000 units/ml Penicillin G sodium salt, 10,000 μg/ml Streptomycin sulfate)
- Trypsin-EDTA
- Dulbecco's phosphate buffered saline (DPBS)
- Cell Cryopreservation solution
- Puromycin

LVpro™ Packaging Mix with pLVpro Pur Series

Cat. #6973 - 6976 v202207Da

D. Culture equipment

- Cell culture plates (100 mm dish, 12-well plates, or flasks, etc.)
- Sterile culture tubes (1.5 ml, 2.0 ml, 15 ml, etc.) and vials for virus cryopreservation
- 0.45 μ m filter for filtration of virus suspension

Note: When performing filtration, use a filter with low protein binding, such as a polyvinylidene difluoride (PVDF), cellulose acetate, or polyethersulfone (PES) filter. Do not use a cellulose nitrate filter, as it binds to the surface proteins on the lentivirus envelope and destroys the virus.

Other equipment and facilities necessary for cell culture

E. Lentivirus titration

We strongly recommend measuring lentiviral titer to ensure accurate, reproducible gene transduction.

The Lenti-X qRT-PCR Titration Kit (Cat. #631235) uses qRT-PCR to quickly and easily determine lentiviral titer in about 4 hours. The Lenti-X p24 Rapid Titer Kit (Cat. #632200) uses ELISA to measure the amount of p24 capsid protein in the viral supernatant. The measured amount of p24 capsid protein correlates with the viral titer.

Lenti-X GoStix^m Plus (Cat. #631280/631281) allows rapid determination of the viral titer in 10 minutes, using 20 μ l of culture supernatant, by detecting lentivirus p24. Using this method for rapid quantification of viral titer can help determine the right time to collect the viral supernatant during virus production.

F. Lentivirus purification

We recommend purifying the lentivirus to remove cellular contaminants that could inhibit gene transduction. The Lenti-X Maxi Purification Kit (Cat. #631233/631234) uses an efficient gravity-flow column protocol for obtaining high-purity, intact lentiviruses from crude supernatants.

G. Lentivirus concentration

Lenti-X Concentrator (Cat. #631231/631232) allows you to concentrate viral titer 100-fold without ultracentrifugation. Using concentrated lentiviruses makes it possible to infect target cells with high multiplicity of infection (MOI) (for details, see "Appendix: Supplemental Protocol").

H. Polybrene for enhancing gene transduction by lentiviruses

Adding polybrene (hexadimethrine bromide; Sigma-Aldrich, No. H9268) is an effective way to promote gene transduction by recombinant lentiviruses. Polybrene is a polycation that reduces charge repulsion between the virus and cell membrane. The optimal concentration of polybrene for the target cells (concentration at which infectivity becomes maximal and toxicity becomes minimal) needs to be experimentally determined within the concentration range of 2 to 12 μ g/ml. When working with cells that could be adversely affected by polybrene or with hematopoietic cells, consider using the RetroNectin® reagent instead.

I. RetroNectin for enhancing gene transduction by lentiviruses

RetroNectin (Recombinant Human Fibronectin Fragment) (Cat. #T100A/B) is a recombinant fibronectin fragment (CH-296) that can greatly improve the efficiency of gene transduction by retroviruses and lentiviruses. By coating the tissue culture plate (non-treated plate), RetroNectin provides a substrate to which both virus and cell can bind. Simultaneous binding of virus and cell to this substrate promotes gene transduction by increasing contact between cell and virus. RetroNectin is particularly useful when you are working with non-adherent cells (lymphocytes, lymphocyte cell strains, etc.), cells resistant to gene transduction (hematopoietic stem cells, etc.), or cells that are particularly sensitive to polybrene.

V. Construction of pLVpro Lentivirus Vector Plasmid carrying the desired gene

- 1. To amplify the plasmid DNA, transform into an Escherichia coli host strain, e.g., E. coli HST08 Premium Electro-Cells (Cat. #9028)*, and use a commercially available plasmid purification kit to purify it.
 - Not available in all geographic locations. Check for availability in your area.
- 2. Using standard cloning technology, insert the desired gene into the multi-cloning site (MCS) of the pLVpro Lentivirus Vector Plasmid. You can also use In-Fusion® Snap Assembly Master Mix (Cat. #638943, etc.), which allows easy cloning of PCR products to any linear vector. The pLVpro Lentivirus Vector Plasmid sequence can be downloaded from the Takara Bio website.

For pLVpro-CMV-Pur Vector and pLVpro-EF1 α -Pur Vector, insert the desired gene sequence including the ATG start codon and a stop codon. The expression level can be improved by adding a Kozak consensus ribosome binding site (Kozak, 1987). A poly(A) signal is unnecessary for gene segments or cDNA. The insertion of a poly(A) signal between virus LTRs causes polyadenylation to occur during viral genome transcription, and may impede production of functional recombinant virions (Cofin, et al., 1997).

3. Prepare plasmid DNA suitable for transfection of the packaging cells.

Reference: We recommend using NucleoBond Xtra Midi Plus/Maxi Plus (Cat. #740412.10, 740416.10, etc.) and NucleoBond Xtra Midi/Maxi (Cat. #740410.10, 740414.10, etc.). After using the NucleoBond kit, the plasmid DNA solution is further centrifuged at 14,000g for 10 minutes and the supernatant is collected to obtain high-purity plasmid DNA suitable for transfection.

VI. Production of recombinant lentivirus from pLVpro Lentivirus Vector Plasmid Protocol: Production of recombinant lentivirus using Lenti-X 293T cells and LVpro **Packaging Mix**

- To obtain high-titer lentiviruses with LVpro Packaging Mix, use Lenti-X 293T cells and strictly follow the protocol described below. In particular, follow requirements for (1) culture size and volume, (2) DNA amount and quality suitable for transfection, and (3) incubation time.
- The following protocol has been optimized with pLVpro Lentivirus Vector Plasmid and LVpro Packaging Mix for gene transduction into Lenti-X 293T cells and production of recombinant lentiviruses.
- Perform all steps in a biosafety cabinet. In order to handle lentiviruses, you will need a biosafety-level II facility approved for use with lentiviruses. Recombinant lentiviruses packaged with HIV-1-derived vector have infectivity toward human cells. Please take proper safety measures.

1. Lenti-X 293T cell culturing

Add Lenti-X 293T cells (5.0 x 10⁶ cells/10 ml/dish*) into 100-mm cell culture dish and culture it overnight in a 5% CO₂ incubator at 37°C. Use DMEM culture medium containing 10% FBS. You can also use DMEM culture medium with 10% FBS and 1% Penicillin-Streptomycin.

* If you are using CalPhos Mammalian Transfection Kit as transfection reagent, culture the cells in a 2.5 x 10⁶ cells/10 ml/dish.

2. Transfection (the day after cell culturing)

Lenti-X 293T cells are transfected with pLVpro Lentivirus Vector Plasmid and LVpro Packaging Mix.

We recommend using one of the following transfection reagents:

- a. TransIT-VirusGEN Transfection Reagent (Mirus Bio, No. MIR6700)
- b. TransIT-293 Transfection Reagent (Mirus Bio, No. MIR2700)
- c. CalPhos Mammalian Transfection Kit (Cat. #631312)

Note: To obtain high-titer lentiviruses with this product, we strongly recommend using *Trans* IT-VirusGEN Transfection Reagent (a) or *Trans* IT-293 Transfection Reagent (b).

Note: A high-titer lentivirus cannot be obtained with the combination of LVpro Packaging Mix and pLVSIN Lentivirus Vector Plasmid (Cat. #6181 - 6192).

Transfection protocols for each of these reagents are shown below.

A. Protocol for *Trans* IT-VirusGEN Transfection Reagent (Mirus Bio, No. MIR6700) (For detailed procedure, see the *Trans* IT-VirusGEN Transfection Reagent manual)

- 1. Transfer *Trans* IT-VirusGEN Transfection Reagent to room temperature and vortex to mix before use.
- 2. In a 2.0-ml tube, mix serum-free DMEM and the plasmid DNA in the following proportions, and mix well with gentle pipetting.

Reagent	Amount
LVpro Packaging Mix	7 μΙ
0.5 μ g/ μ l pLVpro Vector	10 μΙ
Serum-free DMEM	1,000 μΙ
Total	1,017 μΙ

- 3. To the mixture prepared in Step 2, add 30 μ I of *Trans* IT-VirusGEN Transfection Reagent, mix with gentle pipetting, and let stand at room temperature for 15 to 60 minutes.
- 4. Drop all of the mixture from Step 3 onto the Lenti-X 293T cells cultured the day before and continue to culture in a 5% CO₂ incubator at 37°C.

B. Protocol for *Trans* IT-293 Transfection Reagent (Mirus Bio, No. MIR2700) (For detailed procedures, see the *Trans* IT-293 Transfection Reagent manual)

- 1. Transfer *Trans* IT-293 Transfection Reagent to room temperature and vortex to mix before use.
- 2. In a 2.0-ml tube, mix serum-free DMEM and the plasmid DNA in the following proportions, and mix with gentle pipetting.

Reagent	Amount
LVpro Packaging Mix	7 μΙ
0.5 μg/μl pLVpro Vector	10 μI
Serum-free DMEM	1,500 µI
Total	1,517 μΙ

- 3. To the mixture in prepared Step 2, add 45 μ I of *Trans* IT-293 Transfection Reagent, mix with gentle pipetting, and let stand at room temperature for 15 to 30 minutes.
- 4. Drop all of the mixture from Step 3 onto the Lenti-X 293T cells cultured the day before and continue to culture in a 5% CO₂ incubator at 37°C.

C. Protocol for CalPhos Mammalian Transfection Kit (Cat. #631312)

The following protocol, based on the protocol accompanying the CalPhos Mammalian Transfection Kit, has been partially revised to accommodate use of this kit to obtain higher-titer lentiviruses.

- 1. Transfer 2X HEPES-Buffered Saline, 2M Calcium Solution, and Sterile H₂O to room temperature.
- 2. Mix plasmid DNA and Calcium Solution in a 15 ml tube in the following proportions:

Reagent	Amount
LVpro Packaging Mix	7 μΙ
0.5 μg/μl pLVpro Vector	10 μΙ
2M Calcium Solution	87 µI
Sterile H ₂ O	595 μl
Total	699 µl

- 3. Add 699 μ I of 2X HEPES-Buffered Saline into the solution prepared in Step 2, close the lid on the tube, and shake up and down vigorously 15 times to mix.
- 4. Let stand at room temperature for 5 minutes.

Note: Do not incubate for more than 5 minutes and move on to the next step immediately. Longer incubation causes the calcium phosphate-DNA crystals to become too large, which can reduce the transfection efficiency.

Note: Formation of calcium phosphate crystals can be confirmed by examination with a microscope.

5. Drop all of the mixture from Step 4 onto the Lenti-X 293T cells cultured the day before and continue to culture in a 5% CO₂ incubator at 37°C.

3. Changing the medium

Change the medium with 10 ml of fresh DMEM containing 10% FBS about 24 hours after transfection.

4. Collection of lentivirus solution

- 1) Collect the culture supernatant containing the lentivirus about 48 hours after transfection.
- 2) Filter the collected culture supernatant with a 0.45 $\,\mu$ m filter for use as lentivirus solution.

Note: Lentivirus solution can be stored long-term at -80° C. We recommend making aliquots for storage to avoid repeated freeze-thaw cycles, as it can decrease viral titer (Higashikawa, *et al.*, 2001).

Cat. #6973 - 6976

VII. Titration of recombinant lentivirus

A. Various titration methods

To obtain consistent transduction results using a known MOI, it is necessary to titrate vour lentivirus stocks. Freshly harvested virus stocks can be titrated immediately or saved in frozen aliquots at -80°C and titrated later. Note that each freeze-thaw cycle can reduce the functional titer of the virus stock. Viral titers will depend heavily on the cell type and method used for titration. There may also be significant differences between transduction efficiency in the cells (e.g., HT-1080) used for titration and the desired cells targeted for transduction. However, titrations are important for determining the relative virus content of stocks prepared from different vectors, and for:

- Determining the optimal transduction conditions
- Adjusting the MOI to control the viral copy number of transduced cells
- Determining the maximum number of cells that can be infected by a virus stock

Titration can be accomplished using different methods, depending on the presence of a selectable or fluorescent marker:

aRT-PCR

The Lenti-X gRT-PCR Titration Kit allows titration of viral RNA in the virus supernatant in about 4 hours using the intercalator method. This method can be used for various types of lentiviral vectors regardless of presence or absence of a marker, which makes it useful for comparing the titers of various viral vectors.

p24 ELISA

Lenti-X p24 Rapid Titer Kit measures the amount of p24 capsid protein in the virus supernatant by the ELISA method. The amount of p24 correlates with the viral titer. It takes about 4 hours to perform this assay.

Flow cytometry

With a lentivirus vector carrying a fluorescent protein, transduction efficiency can be determined by measuring the fluorescence level with flow cytometry. (See "B. Measuring biological titer with flow cytometry" on the following page)

Antibiotic selection

When using a lentivirus vector that includes an antibiotic resistant gene, prepare a series dilution of the viral stock solution, infect the cells with each, and use an appropriate antibiotic to select stably transduced cells. Calculate the virus titer from the number of drug-resistant colonies that grow on the selection media.

Reference: With Lenti-X GoStix Plus, the amount of lentivirus can be measured easily by adding 20 μ l of virus supernatant and Chase Buffer to the GoStix. The GoStix detect lentiviral p24 with only 20 μ l of supernatant, and can be used to determine whether virus production is within a usable range or for selecting the best time to harvest your virus.

B. Measuring biological titer with flow cytometry

The biological titer of recombinant lentivirus is calculated based on detection of expression of the transduced gene. The following protocol describes how to determine the biological titer of lentivirus vector prepared using pLVpro-CMV-ZsGreen1-Pur Vector (Cat. #6975) carrying fluorescent protein gene ZsGreen1, LVpro Packaging Mix, and *Trans* IT-VirusGEN Transfection Reagent (Mirus Bio, No. MIR6700).

1. HT-1080 cell culturing

Transfer HT-1080 cells into 12-well cell culture plates (2.5 x 10^4 cells/1 ml/well), and culture in a 5% CO₂ incubator at 37°C.

Use DMEM medium containing 10% FBS. You can also use DMEM culture medium with 10% FBS and 1% Penicillin-Streptomycin.

2. Infection with lentivirus (the day after cell culturing)

- 1) Add polybrene to DMEM medium containing 10% FBS (0.5 μ l of 8 mg/ml polybrene solution per 450 μ l of culture medium).
- 2) Replace the medium of HT-1080 cell culture in B-1 with 450 $\,\mu$ l of the medium containing polybrene.
- 3) Prepare serial dilution of the lentivirus solution with DMEM containing 10% FBS. The degree of dilution will depend on the viral titer. We recommend a dilution series ranging from 20- to 20,000 fold.
- 4) Infect the HT-1080 cells from Step 2 by adding 50 μ l of diluted lentivirus solution (final polybrene concentration 8 μ g/ml; final viral dilution rate, 200- to 20,000-fold).
- 5) Culture overnight in a 5% CO₂ incubator at 37° C.

3. Changing the medium

- 1) The next day, discard the medium containing the virus and add 1 ml of fresh DMEM containing 10% FBS.
- 2) Culture for 2 days in a 5% CO₂ incubator at 37°C.

4. Evaluation with flow cytometer

Three days after infection, detach cells with Trypsin/EDTA to recover, and measure the ratio of ZsGreen1 positive cells using a flow cytometer.

5. Calculation of viral biological titer

Calculate the biological titer (IFU/ml) by plugging the ZsGreen1 positive ratio into the formula shown below. The ZsGreen1 positive ratio should be between 1.0 to 20.0%.

Titer (IFU/ml) = number of infected cells x ZsGreen1 positivity rate (%)/100 x virus dilution rate/fluid volume at time of infection (0.5 ml)

Note: For precise calculation of biological titer, an accurate cell count at the time of infection can be obtained by counting the HT-1080 cells prepared for cell counting on the day of infection with lentivirus.

VIII. Methods for transduction of target cells with recombinant lentiviruses

Methods for transducing lentivirus vector into target cells include the polybrene method, static infection method, centrifugal infection method, and the RBV-spin method using RetroNectin (Cat. #T100A/B). Please note that transduction efficiency and cell viability can vary depending on the method used. The protocols for each of these methods are described below.

A. Polybrene method

The standard method when transducing genes into adherent cell strains (HT-1080, HeLa, etc.) is to use polybrene. The optimal final concentration of polybrene may be determined preliminarily but is generally between 2 and 12 μ g/ml. Excessive exposure to polybrene (>24 hr) can be toxic to cells. Refer to the following protocol for determining the optimal conditions for transduction your target cells.

- 1. Seed the target cells the day before transduction.
- 2. Use freshly-prepared virus stock, or titrated frozen lentivirus stock. Mix the thawed lentivirus gently.

Do not use a vortex mixer. The viral titer decreases each time the stock is Note: frozen and thawed.

- 3. Prepare an amount of target cell medium that will allow for addition of the lentivirus stock and polybrene. Add sufficient polybrene such that the final concentration at transduction (Step 5) is 4 μ g/ml.
- 4. Dilute the lentivirus with medium to obtain the desired MOI. If the virus titer is unknown, use a serial dilution of the lentivirus stock. Make sure that the entire amount of virus solution does not exceed 1/2 of the total volume of medium used for transduction.
- 5. Add the diluted virus solution prepared in Step 4 to the target cells and culture at 37°C in a 5% CO₂ incubator for 8 to 24 hours.

Centrifuging the plate before incubation at 37°C at 1,200*g* for 60 to 90 minutes at 32°C or room temperature significantly improves the infection efficiency. You can shorten the transduction time to 6 to 8 hours to avoid exposing the cells to polybrene or virus solution (including culture medium conditioned with packaging cells) for long periods of time.

- 6. Remove the transduction medium containing the virus and add fresh medium.
 - Discarded medium contains infectious lentivirus and should be disposed off properly.
- 7. Culture the infected cells until sufficient transgene expression can be confirmed (usually 24 to 48 hours).
- 8. Recover the cells for analysis or begin selection using an appropriate antibiotic.

B. Static infection method

When transducing non-adherent cell strains (SupT1, J45.01, etc.) or when using a viral vector with high titer, infection can also be performed by the static infection method.

- 1. Seed the target cells after adjusting the volume of culture medium so that the lentivirus solution can be added.
- 2. Use freshly-prepared virus stock, or titrated frozen lentivirus stock. Mix the thawed lentivirus gently.

Note: Do not agitate in a vortex mixer. The viral titer will decrease each time the stock is frozen and thawed.

- 3. Dilute the lentivirus with medium to obtain the desired MOI. If the virus titer is unknown, use a serial dilution of the lentivirus stock. Make sure that the entire amount of virus solution does not exceed 1/2 of the total volume of medium used in transduction.
- 4. Add the diluted virus solution prepared in Step 3 to the target cells and culture at 37° C in a 5% CO₂ incubator for 8 to 24 hours.
- 5. Add an equal volume of fresh medium.
- 6. Culture the infected cells until sufficient transgene expression can be confirmed (usually 24 to 48 hours).
- 7. Recover the cells for analysis or begin selection using an appropriate antibiotic.

C. Centrifugal infection method

The centrifugal infection method is effective for transduction of cell strains that are sensitive to polybrene or non-adherent cell strains that have low efficiency with the static infection method. You can achieve highly efficient infection of human peripheral blood mononuclear cells (PBMCs) by the supernatant method (centrifugal infection) using RetroNectin.

- 1. Seed the target cells after adjusting the volume of culture medium so that the lentivirus solution can be added.
 - **Note:** For the Supernatant method using RetroNectin, culture the cells in RetroNectin-coated plates (See VIII-D).
- 2. Use freshly-prepared virus stock, or titrated frozen lentivirus stock. Mix the thawed lentivirus gently.

Note: Do not agitate in a vortex mixer. The viral titer will decrease each time the stock is frozen and thawed.

- 3. Dilute the lentivirus with medium to obtain the desired MOI. If the virus titer is unknown, use a serial dilution of the lentivirus stock. Make sure that the entire amount of virus solution does not exceed 1/2 of the total volume of medium used in transduction.
- 4. Add the virus supernatant to the cells and centrifuge the plate at 1,200g for 60 to 90 minutes at 32° C or room temperature.
- 5. Culture in a 5% CO₂ incubator at 37°C for 8 to 24 hours.
- 6. Add an equal volume fresh medium.
- 7. Culture the infected cells until sufficient transgene expression can be confirmed (usually 24 to 48 hours).
- 8. Recover the cells for analysis or begin selection using an appropriate antibiotic.

LVpro™ Packaging Mix with pLVpro Pur Series

Cat. #6973 - 6976 v202207Da

D. RetroNectin Bound Virus (RBV)-spin method

Using RetroNectin can markedly improve transduction efficiency for cells that are difficult to transduce or that are sensitive to polybrene. Particularly for transduction of PBMCs, use of the RBV spin method helps eliminate factors in the viral solution or cell culture supernatant that might interfer with transduction, and this method has little effect on cell proliferation.

Preparation of RetroNectin-coated plates

- 1. Thaw the RetroNectin solution and mix it until it is homogeneous (avoid vortexing). Dilute with sterile PBS to a concentration of 20 to 100 μ g/ml.*1
 - To avoid loss of RetroNectin, do not filter-sterilize RetroNectin solution diluted with PBS.
- 2. Add diluted RetroNectin solution to the plate*2 to a concentration of 0.25 to 0.5 ml/cm² (enough to cover the bottom of the plate), spread it out over the plate, and let it stand at room temperature for 2 hours or at 4°C overnight. If using a 24-well plate, add diluted RetroNectin solution at 0.5 ml per well; if using a 6-well plate, add RetroNectin solution at 2 ml per well.
 - *2 Be sure to use a non-treated plate.
- 3. Remove the diluted RetroNectin solution from the well, and add an appropriate amount of 2% BSA/PBS solution in the well for blocking. Allow the plate to stand at room temperature for 30 minutes.*3 If using a 24-well plate, add 0.5 ml per well of blocking solution; if using a 6-well plate, add 2 ml per well.
 - If the RetroNectin-coated plate will be used immediately, there is no need for blocking with 2% BSA/PBS solution. In this case, repeat Step 4 (washing with PBS or HBSS/HEPES) twice.
- 4. Remove the 2% BSA/PBS solution, wash once with an appropriate amount of PBS or HBSS/HEPES, and store the plate after removing the wash solution. This plate will be used as the RetroNectin-coated plate.*4
 - If blocking has been performed with 2% BSA/PBS solution, the coated plate covered with a lid can be stored for 1 week at 4°C after sealing with Parafilm.

LVpro™ Packaging Mix with pLVpro Pur Series

Cat. #6973 - 6976 v202207Da

· RBV-spin method (centrifugal infection)

Note: When a multi-well plate is used, the transduction rate may differ depending on the position of the well. We recommend using wells positioned as close to the center of the plate as possible.

1. Use freshly prepared virus stock or titrated frozen lentivirus stock. Mix the thawed lentivirus gently.

Note: Do not agitate in a vortex mixer. The viral titer will decrease each time the stock is frozen and thawed.

- 2. Dilute the lentivirus with medium to obtain the desired MOI. If the virus titer is unknown, use a serial dilution of the lentivirus stock.
- 3. Add 125 to 250 μ l/cm² of an undiluted or diluted solution of the recombinant lentivirus that has the desired gene to a RetroNectin-coated plate.
- 4. Centrifuge at 4° C and 2,000g for 2 hours to cause the viral particles to adhere to the RetroNectin.
- 5. Remove the virus solution, but do not allow the plate to dry out, and add an appropriate amount of PBS or PBS containing 0.1 to 2% albumin (BSA or HSA). Do not remove this solution until immediately before infecting the cells with the virus.
- 6. Prepare the target cell suspension. The appropriate cell concentration will differ depending on the size and proliferation rate of the target cells. Consider preparing the suspension within the concentration range of 0.05 to 5×10^5 cells/cm², depending on the cells.
- 7. Remove the solution from the virus-bound plates prepared in Step 5 above, and quickly add the cell suspension. Optional: centrifuge for 1 minute at 500 *g* to promote contact between the target cells and the virus vector.
- 8. Culture at 37° C in a 5% CO₂ incubator for 8 to 24 hours.
- 9. Add an equal volume of fresh culture medium.
- 10. Culture the infected cells until sufficient transgene expression can be confirmed (usually 24 to 48 hours).
- 11 Recover the cells for analysis or begin selection, using an appropriate antibiotic.

IX. Appendix: Supplemental Protocol

A. Measurement of cell sensitivity to puromycin for creation of transgene-expressing cell lines

Before using puromycin to select for cells stably expressing a transgene, it is necessary to measure the puromycin sensitivity of the target cell line and determine the optimal concentration of puromycin to use for cell line selection.

Table 1. Recommended concentration of antibiotic (μ g/ml)

Antibiotic	Working Range	Selection	Maintainance
Puromycin	0.25 - 10 μg/mL	0.5 - 10 μg/mL	0.25 μg/mL

- 1. To measure antibiotic sensitivity, prepare culture medium containing puromycin concentrations 0, 1.0, 2.5, 5.0, 7.5, and 10.0 μ g/ml, respectively.
- 2. Add 3 ml of culture medium containing puromycin at each concentration to each well of a 6-well plate and seed with 2×10^5 cells/well.
- 3. Culture the cells 4 to 7 days. Replace with fresh culture medium containing puromycin after 2 days to remove the dead cells.
- 4. For selection of puromycin-resistant cells, use the concentration at which all of the cells die within 3 or 4 days.

Note: As the efficacy will differ between different lots of puromycin, measure the optimal concentration for each new lot.

B. Concentration of lentiviral particles

Lenti-X Concentrator (Cat. #631231) is a reagent for easy, quick, and efficient concentration of lentivirus solution without ultracentrifugation.

- 1. Add Lenti-X Concentrator to lentivirus solution and mix. (For 30 ml of the virus solution, add 1/3 Concentrator, or 10 ml)
- 2. Incubate at 4°C for 30 min to overnight.
- 3. Centrifuge at 1,500g for 45 minutes at 4°C.
- 4. After removal of the supernatant, resuspend the pellet in 1/10 to 1/100 volume of PBS, etc. (for 10- to 100-fold concentration).

X. References

- Cochrane, A. W., Chen, C. H., and Rosen C. A. Specific interaction of the human immunodeficiency virus Rev protein with a structured region in the env mRNA. *Proc Natl Acad Sci USA*. (1990) 87: 1198-202.
- Coffin, J. M., Hughes, S. H. and Varmus, H. E., eds. Retroviruses, Cold Spring Harbor Laboratory Press (Cold Spring Harbor, NY) (1997).
- Higashikawa, F. and Chang L. Kinetic Analysis of stability of simple and complex retroviral vectors. *Virology.* (2001) **280**: 124-131.
- Higashimoto, T., Urbinati, F., Perumbeti, A., Jiang, G., Zarzuela, A., Chang, L-J., Kohn, D. B. and Malik, P. The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. *Gene Ther*. (2007) **14**(17): 1298-1304.
- Kozak, M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. (1987) 196: 947-50.
- Quinn, T. P. and Trevor, K. T. Rapid quantitation of recombinant retrovirus produced by packaging cell clones. *Biotechniques*. (1997) **23**: 1038-1044.
- Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L. and Charneau, P. HIV-1 genome nuclear import is mediated by a central DNA flap. *Cell*. (2000) **101**: 173-185.
- Zufferey, R., Donello, Trono, D. and Hope, T. J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. *J Virol*. (1999) **73**: 2886-2892.

XI. Related Products

```
[Lentivirus Packaging System]
LVpro™ Packaging Mix (Cat. #6195)
LVpro™ Packaging Mix with pLVpro Series (Cat. #6962 - 6967)
pLVpro-Promoterless-Km Vector (Cat. #6968)
```

[Transfection reagents]
CalPhos™ Mammalian Transfection Kit (Cat. #631312)

[Packaging cells] Lenti-X™ 293T Cell Line (Cat. #632180)

[Titer measurement]

Lenti-X™ qRT-PCR Titration Kit (Cat. #631235)

Lenti-X™ p24 Rapid Titer Kit (Cat. #632200)

Lenti-X™ GoStix™ Plus (Cat. #631280/631281)

[Recombinant lentivirus purification]
Lenti-X™ Maxi Purification Kit (Cat. #631233/631234)

[Recombinant lentivirus concentration] Lenti-X™ Concentrator (Cat. #631231/631232)

[Increasing infection rate with recombinant virus]
RetroNectin® (Recombinant Human Fibronectin Fragment) (Cat. #T100A/B)

RetroNectin is a registered trademark of Takara Bio Inc. In-Fusion is a registered trademark of Takara Bio USA, Inc. LVpro is a trademark of Takara Bio Inc. Lenti-X, CalPhos, and GoStix are trademarks of Takara Bio USA, Inc.

NOTE: This product is for research use only. It is not intended for use in therapeutic or diagnostic procedures for humans or animals. Also, do not use this product as food, cosmetic, or household item, etc.

Takara products may not be resold or transferred, modified for resale or transfer, or used to manufacture commercial products without written approval from Takara Bio Inc. If you require licenses for other use, please contact us by phone at +81 77 565 6972 or

from our website at www.takarabio.com.

Your use of this product is also subject to compliance with any applicable licensing requirements described on the product web page. It is your responsibility to review, understand and adhere to any restrictions imposed by such statements.

All trademarks are the property of their respective owners. Certain trademarks may not be registered in all jurisdictions.